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Let H, be the set of all algebraic polynomials with real coefficients of degree at
most n(n+1eN). For Qe H,, «, f> — 1 we set

1 12
10l o= {f (1—x)* (1 +x) Q*(x) dx} .
—1

Letn+1€eN,

(ﬂ(n9 X, ﬁa %‘3) ::Sup{HQHa,ﬁ: QEHna HQHy,rS: l}

In this paper we find explicit expressions in terms of n for ¢(n; a, f; 0+ 1, ),

@+ 1, i, f) in cases |of=|fl=3, and for o(n; 3,33 3), (333, 3).
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1. INTRODUCTION

For two sequences {o,}¢, {f.}¢ of positive numbers, we shall write
a, ~ B, if there exist constants A, A, >0, independent of n, such that

A f. <o, < AP, (n+1eN).
The following relations were proved in [2]: if a, f, 7, d > — 1, then

(n+1)max=xo=F) if y>a or o>p,

1 if y<a and o<p. (1)

go(n, a, ﬂ’ Vs 5) ~ {

The following statement was proved in [6]: let &, u >0, —1 +e<a, y<pu.
There exist constants C,, C,>0, depending only on & and u, such that
Vne N we have

C, -7 =@+ (g 4 1) =@ = D < (e o 0z, 7)
< Cy -7~ @A (4 1) =@ —(/2),
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We note that explicit expressions for ¢(n; «, f; 7, 0) have not been found
before. The search for exact constants in different kind of inequalities is
and, we hope, always will be of considerable interest for mathematicians.
However, it is not the exact constants themselves that are very important
but the methods used for their determination, which are quite often inter-
esting and instructive.

2. SOME CONSEQUENCES OF THE GAUSS-JACOBI
MECHANICAL QUADRATURE

Let w(x) be a weight function defined on [ —1, 1], ie., Lesbesgue-
measurable, nonnegative, and such that [', w(x)dx>0. Let {p,(x)}¢
be the system of algebraic polynomials orthonormal on [ —1,1] with
respect to w(x). We denote by x* (neN, k=1,2,..,n) the zeroes of
pa(x), arranged in decreasing order. For the Jacobi weight w(x)=
(1—=x)*(1+x)# (0, B> —1) we set xP=x®:%F (neN, k=1,2,..,n). In
this section we will make use of the Gauss—Jacobi mechanical quadrature
[8] (formula (3.4.1)): there exist positive numbers A{", A", .., A such
that Vo e H,,_, (ne N) we have

n

1
[ otowiod=3 19 (x) 2)
-1 v=1

We will use formula (2) to obtain explicit expressions for ¢(n; o, f; o0+ 1, )
and ¢@(n; a+ 1, f; o, B) in the cases |a| = |B| = 3.

THEOREM 1. Leta, f> —1, n+ 1€ N. Then

oo fra+ 1, f)= (1 —x(peh)y-12 3)
p(nyoa+1, By, f) = (1 —xHi=r)12, (4)

Proof. Let w(x)=(1—x)*(1+x)?, QeH,. Applying (2) to ¢(x)=
(1 —x) O*x), we obtain

[" e ()P Q) dx
1

=Y A X QU (5)
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from where

[ s (1 Q) dx
1

n+1
S(L=x{Dieh) Y 20D Q2 ), (6)
v=1
Taking into account (2), we obtain
n+1 1
Y ATV QE = (-0t (142 Qo) dx. (7)
v=1 -

It follows from (6) and (7) that

jl (1 =)+ (14 x)# Q%(x) dx
1

<Oz ben [ (-0 (exf Qode. (8)

—1

We consider now the polynomial Q, € H, such that Q,(x(%>%#)=0

n+1

(v=1,2,..,n), O;(x" =P =1.1If we apply (5) and (7) to Q,, we obtain

1
| (=2 ()P Q) de = A0 — x50,

1
=] (=t () ) d,

which imply

f (1—x)**1 (1 +x)# Q3(x) dx

1
= (1=t f) [ (1=x)% (14 %) Q3(x) d. (9)
—1

From (8) and (9) we obtain (4). Equality (3) can be proved in a similar
manner. Thus, Theorem 1 is proved. |

In the case || =|f| =13 there are well-known explicit expressions for
x(1F2f and x"H % F In the other cases one can use numerous estimates
for x(!=# and x" " =# [3, 4,7, 8, pp. 121, 124, 138], yielding estimates
from above for ¢(n; a, f; o+ 1, f) and @(n; a+ 1, f; a, f), where instead of
(1—xeh) =12 and (1 —x&HD:%F)V2 there will be explicit functions of
n, o, p.
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Now we intend to derive some new inequalities for algebraic polynomials
by making use of formula (2). Let R, e H, (le N), |R)(x)|<lon[—1,1].
It follows from (2) that VQ € H,, we have

FL1 Ry(x) w(x) Q*(x) dx
[Lyw(x) Q%(x) dx
Zn+1 +17/2] l(nJrl +L42]) Q (x(v)

n+1+Ll2J)R(x51V3Ll+Ll2J) (10)
S TFLRT e T2 25 ()

n+1 +LI/2J)

From (10) we derive that

sup { [ R wix) @2n) dvs Qe e [ i) Q) di=1 |

)
< max {R,(xﬁ]}rlﬂ,/zj), v=1,2,.,n+1+ {2” (11)

It follows directly from (11) that VQ € H,, the following estimate holds:
1
[+ Ry(x)) wix) 0%(x) dx
)
< <1 + max {R,(xivjrlﬂ,/zj): v=1,2,.,n+1+ {2J })

< " () 0%(x) dx. (12)
1

Similarly, VO € H,, we have

jl (1+ R,(x)) w(x) Q(x) dx

. /
> <1 + min {Rl(xflV}rHU/zJ): v=1,2,.,n+1+ {ZJ })

x f Ww(x) 0%(x) dx. (13)

If /=2, then, in general, in (12) and (13) we cannot replace the inequality
signs < and > by the equality sign. In fact, we are unable to use the same
line of reasoning we used before to prove (3) and (4): there is no Qe H,,
such that Q(x() o) =0 for v=2,..n+ 141121 Ox"),,  ,,)=1L
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similarly, there is no Qe H, such that O(x{),, ,,)=0 for v=1,2, ..,
n+L121, O(xpiitH2)=1. We can now conclude that, in general,
inequality (12) is not sharp, ie. the constant 1+max{R,(x{" | ,»)):
v=1,2,.,n+1+|//2]} need not be the smallest on the whole class
Qe H,. The same is true for the inequality (13).

Now we consider the particular case w(x)=(1—x?)"% then x{V=
cos(vi/n+1) (v=1,2, .., n). We set R,(x)= —x', [=2k, ke N. It is easy to
derive from (13) that YQ € H, we have

f (1—x)(1 —x2)"2 Q(x) dx
1

1
>(1—cos*—" 1 —x2)'2 02(x) dx. 14
(1mco 2 ) [ (=2 @ar (14)
We will prove later in this paper that for k =1 the inequality (14) is sharp.

By applying (12) to the same particular case we obtain that VQ € H,, we
have

[* (=)0 =692 Q2x) dx
-1
wm+k+1)n

< _
\<1 cos 2n+k+2)

>j1 (1—x)2 Q%x)dx  (15)

if n+k+1 is even. We will prove below that for n even and k=1 the
inequality (15) is sharp.

We note that B. Bojanov [1] applied the Gauss—Jacobi mechanical
quadrature to prove certain Duffin—Schaeffer type inequalities.

3. THE MAIN THEOREM

THEOREM 2. Ifn+1€N, then

1133 T \7!
22 2 g 16
¢<n,2,2,2,2> <smn+3> , (16)
31311 cos (n7f|—3) if n is even,
@ n,i,a;i,i = (17)
cos —— if nis odd.
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4. SOME AUXILIARY STATEMENTS
We need two algebraic lemmas to carry out the proof of Theorem 2.

LeEmMMmA 1. The following equality holds:

ay 0 ap, 0 0 0 0 0 0

0 by 0 by O 0 0 0 0

ay 0 ayp 0 axp 0 0 0 0

0 by 0 by O 0 0 0 0

0 0 ayp 0 ay - 0 0 0 0

o o0 o0 o0 o Ay 1, n—1 0 Ay_1,n 0

0o 0 0 o0 0 0 by_1,n-1 0 bu_1n

0o 0 0 o0 0 Ay -1 0 Up n 0

0o o0 0 0 0 0 bun_1 0 by n
ay, ap 0 0 0 by by, 0 0 0
dy1 Ay do3 0 0 by by by 0 0

|0 axn asn 0 0 0 b3y bis 0 0
0 0 0 Ay_1,n—1 9n—1,n 0 0 0 bn—l,n—l bn—l,n
0 0 0 - G, Ay, 0 0 0 v byur by,

(18)
Proof. 1t is easy to prove (18) by expanding the determinant on the

left-hand side of (18) over the rows 1, 3, ..., 2n — 1 with the aid of Laplace’s
theorem. ||

LEMMA 2. Let

24-2 0 1 0 0 0 0 0
0 2i-2 0 10 0 0 0 0
1 0 2.-2 0 1 0 0 0 0
0 1 0 2,-20 0 0 0 0

4,0)=1 = : : : : :

0 0 0 0 0 24-2 0 1 0
0 0 0 0 0 0 24-2 0 1
0 0 0 0 0 1 0 2.-2 0
0 0 0 0 0 0 1 0 2i-2
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be a determinant of order n, ne N. If 0 <A <2, @=arccos(A—1), then we
have

_sin’(m+1)0

A2m(/1)_ Sin20 H meN, (19)
i 2) 0 si 1)0
Hypos(iy =S0mH2) Osin(m+ 1Oy (20)
sin® 6
Proof. First we prove (19). We denote

24—2 1 0 0 0

1 24—2 1 0 0

0 1 2A—=2 ... 0 0

Am,O(/l): : : : T . . ;
0 0 0 e 242 1
0 0 0 1 24—2

A,,.0(A) is a determinant of order m. Making use of (18), we obtain
A1) = (A, o( 1)) (21)
We apply mathematical induction to prove that

sin(m +1) 0

Amold)=—0%

,  meN. (22)

For m=1 and m =2 relation (22) is obvious since

in 20

Ay o) =24 —2=2c0s =27

’ sin 6
sin 30
Y| N=4(A—1)>—1=4cos?0—1= .
2,0(4) =4( ) cos™ 0 sin 0

Assume that (22) holds for m, m + 1 € N. We have to show that under this
assumption we have

sin(m+3) 0

Am+2,0(/“): sinH
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Expanding 4,,,, ¢(4) with respect to the first column and making use of
the induction hypothesis, we obtain

Ao o(A)=2¢c080-4,,, 1 o(4)— Am,O()”)

sin(m + 2) 0_ sin(m+1) 6
sin 6 sin

=2cos0-

_sin(m+3) 0 +sin(m+1)0—sin(m+1)0
B sin 0

_sin(m+3) 0

- sing
Therefore, since equality (23) is proved, so is (22). Equality (19) follows
directly from (21) and (22).

The proof of (20) is more involved. First we prove by induction that for
m+ 1€ N we have

2%,—2 ™ ,
Aomr(D) ="z 3 (1) sin’(m+1-Kk) . (24)
0

First we verify (24) for m=0 and m=1. For m =0 we have

Ao 1(2) = A4(1) =24 —2=2cos 0,

2-2 Z . 2A-2 .
e kgo ) sin*(m+1—k) 0= a2 0 -sin* @

=2).—2=2cos 0,

while for m =1 we have

2cos 6 0 1
Ay 1 1(A)=45(2)=| 0 2 cos 6 0 |=8cos’d—2cosb,
1 0 2cos 0
2,—-2 2 cos 0
Z ksin?(2—k) 0= (sin? 20 — sin? 0)
sin? 0 o n? 0

=8cos®0—2cos 0.
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Thus, (24) is verified for m =0 and for m = 1. To complete the proof of (24)
it is sufficient to prove that if (24) holds for m —1 (m e N), then it holds
also for m+ 1. Expanding 4,,,, ;(4) with respect to the first column, we
obtain

A2m+3(/l) = (2;L - 2) A2m +2()v)

0 1 0 0 0 0 0 0 0
24—=2 0 1 0 0 0 0 0 0
1 0 24-2 0 1 0 0 0 0
0 1 0 24-2 0 0 0 0 0
+ 0 0 1 0 24—2 0 0 0 0
0 0 0 0 0 2.=2 0 1 0
0 0 0 0 0 0 242 0 1
0 0 0 0 0 1 0 2.-2 0
0 0 0 0 0 0 1 0 2.=-2

Expanding the last determinant of order 2m + 2 with respect to the first
column, making use of (19) and of the induction hypothesis, we obtain

Ao 3(4) = (24 =2) A3y 1 5(2) = (24 =2) A5, (4) + A3y —1(4)

sin* (m+2) 0 sin*(m+1) 0

— (222 —(24-2).
(24-2) sin? 0 (24-2) sin” 0
24 —2m=1
ZEN (L) sin?(m—k) 0
sin® 0 =,
21_2m+1
=——— Y (—=1)fsin®(m+2—k)0.
sin? 0 =,

Thus, equality (24) is proved.
It remains to prove that for any m (m+ 1€ N) we have

2,-2 . sin(m+2)60-sin(m+1) 6
— —1)*sin? 1-k)0=
sinzﬁkgo( )" sin(m + ) sin? 0

(25)

We consider two cases: (1) m is even; (2) m is odd.
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(1) m is even. By applying the formula sin? a = (1 — cos 2a)/2 to each
term under the summation sign on the right-hand side of (24), we obtain

2A=-2 1
Azmﬂ(ﬂ):m' Y (—1)F

k=0

—cos(2m+2—2k)0
2

A—1

== - _1k+ “ _1 k+1 2 +2_2k 0}
sze{Z( ) kgo( )+ 1 cos(2m )

k=0

;»—1 m+1
Zm Z (—l)kCOSQ,kH
k=0
-1
“sin® 6

m+1
R Z (_l)keZik(?
k=0

J—1 1_62i(m+2)49
¢

“sin2 0 1 + %

A= m1—cos2(m+2)0—isin2(m+2)0
~sin? 0 1 +cos 20 + i sin 26

A—1 % sin(m +2) O sin(m+2) § —icos(m+2)0]

“sin2 0’ cos O(cos 0+ i sin 0)
A1 m—isin(m+2)H[cos(m+2)9+isin(m+2)9]
~sin® 6 cos 0(cos 0 + i sin 0)

A—1 o —isin(m+2)0[cos(m+1)0+isin(m+1)0]
=S5 R

sin” 6 cos 0

_sin(m+2)0-sin(m+1)0
B sin® 0 ’

(2) m is odd. Making use of the formula sin?« = (1— cos 2x)/2, we
obtain

A—1 m
Aom (D) =5 S (=1)**+1cos(2m+2—2k) 0
k=0
/1_1 m+1 ]
— R -1 k+1 ,2ik0
sin? 6 (=1)""e

k=1
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}.—1 Ztﬁ(l_eli(erl)B)

" sin 9 1 + &%

A=l *sin(m+1)0-(sin(m+1)0 —icos(m+1)0)
~sin? 0 cos 0 - e”

_A—=1 _ (—i)sin(m+1)0-e” .m0
sin?0 cos 0

_A—1 (—i)sin(m+ 1)0.eim+20
~sin®0 cos 0

_sin(m+1) 6-sin(m+2) 0
B sin? 6 '

Lemma 2 is completely proved. ||

5. COMPLETION OF THE PROOF OF THEOREM 2

We denote by {J7#} 5 the system of Jacobi polynomials, orthonormal
on [ —1,1] with the weight function (1—x)*(1+4+x)? « f> —1. Let
Qe H,. We represent Q as

0= ¢, (26)
which implies
1
|| (1=2)2 Q) dx= Y e (27)

Making use of the identities

1
(1 _ x2) ‘]511/2’ 1/2)(x) —_

S — Licip e, wen,

2 n+2

1 1
(1—x2) J(2 12 (x) = — J(=1/2. =1/2)(x) -3 JE12 =12)(x),

/2
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and taking into account (26), after simple transformations we obtain

(1—x?) Z (1= x2) T2 1) (x)

1 1
—¢o < J(12=12) ) -3 Jv _1/2)(x)>

NG

1
+ Y o {2 TV 1) (x)

k=1

1

1

:(;Oﬁ

c
—1/2, —1/2 0
J(() 1/ /)(x)_i

5 J(271/2, 71/2)(x)

n

k+2

1 & 1
+3 Y ckjgc—l/z,—l/z)(x),5 Y e Gy
k=1

k=1

O

NG 2

J(zf 1/2, 71/2)()()

n+2

_ E J§€112/2, _1/2)(X):|

1 Z 1
+5 > CkJI(C—l/Z,—l/Z)(x)_E Y e o J V12 )

k=1 i=3

C
=50 g1 1)y 0

> 5 J(2—1/2, —1/2)(x)

+§ Y (cp—cx_») JE ()

1 1
+§ e JTV2 1) (x) _,_5 exJ V2 =12 (x)

N | —

1
1/2, —1/2 1/2, —1/2
5 e T ) =S 6 T ()

c 1 .
— 0 J(()—I/Z,—I/Z)(x)_l_EClJ; 1/2, 1/2)(x)

Y

+

NS}

n
Y (ex—eia) T T )
k=2

J=12 71/2)( ) — 1 e J=1/2 71/2)( ).

2 Cn—1 n+1 2 Cn n+2
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From (28), Parseval’s equality yields

[" (1= otr 2
-1 J1=x2

=j1(y—ﬁfﬂQ%xnu

2 2 n 2 2
_G_ a !l RO
—2+4+4k§2(ck Cr_2)*+ 1 T
2 2 n n n 2 2
(’0 Cl 1 2 2 cn—l Cn
= — —_— — —2 _— —
) + 2 +4<kgzck+k§26k—z kg2ckck—2>+ 4 + 4
C(Z) 1 n ) n ) 1n72
=5+ Yot ) < -3 Y CkChin
k=1 k=0 k=0
3 ) 1 n ) 1n72
=2 — - ) 29
4C0+2k§1 Ck 2k§06k6k+2 (29)

It follows from (29) and (27) that in order to conclude the proof of
Theorem 2 it is sufficient to find the maximum and the minimum values of
the quadratic form

n—2

n _
f‘(coaclo"'a cn):%Cg_l— Z Ci_ Z CrCry2
k=1 k=0

over the unit sphere 37 _, ¢z = 1. It is well known that these are equal to
the greatest and smallest roots of the equation

3.0 =1 0 0o 0 0
0 1-4 0 -1 0o 0 0
—1 0 1=i 0 .. 0 0
Apr(A)=| : : o : : - | =0,(30)
o 0 0 0 - 1—4 0 -1
O 0 0 0 - 0 1-4 0
o 0 0 0 - -1 0 1-i

respectively. The determinant in (30) has order n + 1. It is well known that
all the roots of the equation (30) are real. We prove that all roots 4 of the
equation (30) satisfy 0 <1 < 2. First of all, it is obvious that YQe H,,, Q#0
we have
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F(Cor Cry o €) =2 fl (1—x2)%2 Q(x) dx

1 n
<2f (1—x2)"2 Qx)dx=2 Y ¢2,

-1 k=0
which implies 4 <2. On the other hand, it follows from (1) (second line)
that min{ | Q|3 3,: Q€ H,, Q1,12 =1} = 1, which implies 2> 0. Thus,
when considering the equation (30), we can make use of the equalities (19)
and (20).

We write the first and the third elements of the first column of 4,,, (1)

as 1+ (1—/) and 0+ (—3), respectively. Then we represent A, , (1) as

Ay 1(2) =4, 1(2) +34,(2)

where the determinant

1=, 0 -1 o o 0 0

0 1-2 0 -1 o 0 0

-1 0 1-2 0 0 0 0
_ 0 -1 0 1—4 0 0 0
Ak()")z 2 : : .

o 0 0 0 -2 o0 -1

0 0 0 0 0 1-42 0

o 0 0 0 1 01—

- 1
Ak(A)=(72)kAk(i), keN,
so that
— 1
An+1(ﬂ»)=m[—An(l)+An+1(i)]- (31)

We consider two cases: (1) n=2m(m+1eN); (2) n=2m+ 1(m+1€N).

(1) Let n=2m(m+ 1€ N). Taking into account (31), (19), and (20),
we obtain
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_ 1
Api1(A) = =557 [ = 4op(2) + A2 41(4)]

B 1 Sinz(m—i-1)9+sin(m+2)9-sin(m+1)0
RS sin® 0 sin? 0
_sin(m+1)

Z [sin(m+1)60—sin(m+2) 0]

22m +1 Sil’lz

0 2 3)60
sin§~sin(m+1)6~cosw

227 sin? ()
(2) Letn=2m+1(m+1eN). In a similar way we obtain

0 2 3)6
sini-sin(m+2)6-cosw

Apia(A) =

22m+ 1 Sil’l2 0

Now we find the greatest and the smallest zeroes of 4, ;(1), separately
for the case n=2m (m+1eN) and n=2m+1 (m+1€N).

In the case n=2m (m+ 1€ N), the function 4, ;(1) is a polynomial of
degree 2m+1 in A. Its zeroes are 1+cos(kn/m+1) (k=1,2,..,m) and
1 +cos(n(20+1)2m+3) (I=0, 1, .., m). The smallest zero of 4, (1) is
1 +cos(n(2m+1)2m+3)=14cos(n(n+1)/m+3)=2sin*(n/n+3) and,
therefore

i i
i : 2—-1%=2sin>——
min {f(co,cl, ,Cp) kgo cr } sin paet

implying (16). The largest zero of A4, ;(4) is 1+ cos(n/2m + 3) =2 cos*(n/
2(n+3)) and, therefore

- T
max {f(CO’ Cry ooy Cn): Z Ci=1}=200822n+

implying (17) (case n even).

In the case n=2m+ 1 (m+ 1€ N), the function 4, ,(4) is a polynomial
of degree 2m+ 2 in A. Its zeroes are 1 +cos(kn/m+2) (k=1,2,...,m+1)
and 1+ cos(n(2/+1)2m+3) (I=0, 1, .., m). The smallest zero of 4, (1)
is 14 cos(n(m+1)/m+2)=1—cos(n/m+2)=2sin*(n/2m +4) =2 sin*(n/
n+ 3), which implies (16). The largest zero of 4,,, (1) is 1 +cos(z/2m + 3)
=2 cos*(m/2(n+2)) and, consequently, relation (17) (case n odd) holds.
This concludes the proof of Theorem 2.
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6. REMARKS

1. The idea of reducing certain extremal problems for polynomials to
the problem of finding the maximum and minimum values of a quadratic
form in n variables over the unit sphere has been previously used by
P. Turan [9] to prove some sharp Markov inequalities in the L,-metric
with Hermite and Laguerre weight functions.

2. We give now two examples of how to derive estimates of the con-
stants in some Bernstein type inequalities by combining the statements (3),
(4), (17)—(19) and some results obtained by Daugavet and Rafalson [2]
and by Guessab and Milovanovic [5].

(a) The following sharp inequality was proved in [2]. If Qe H,,
m+1eN, u> —3, then

n' I'n+4u+m+1)
) < . 32
”Q |‘2ﬂ+m,2ﬂ+m \/(n_m)| F(n+4u+l) HQHZ,u,Zy ( )

For u=1/4 we obtain
m I'n+m+2)
10" )Hm+1/z,m+1/2< WHQHl/z,1/z~
Making use of (16) we obtain
In+m+2) /. w \7!
; (33
(n—m)! (n+1) <51nn+3> ‘|QH3/2,3/2, (33)

in particular, for m =1 we have

[ Q(m)Her 2, m+12

—1
. T
Qs sa </t 2) (sin ) Qs (39

+3

(b) The following sharp inequality was proved in [5]. If Qe H,,,
m+1€eN, o, f> —1, then

'In+a+p+m+1)
() < = ) 35
HQ Hm+oc,m+/? \/(n—m)'F(n—i—oc—i—ﬂ—i—l) HQH:X,/? ( )
If in (35) we set « == —1 then we obtain
- nl'(n+m)
1O s — 12, m— 12 < WHQH—l/z,—l/z- (36)

Taking into account the well known expressions for the zeroes of the poly-
nomials J{=* =12 (ne N), we derive from (3) that

1

>:\ﬁsin'

T
4(n+1)

1 11 1
@ (”; 5 _5;5’ ) (37)
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From (36) and (37) it follows that

- nl(n+m) 1
HQ( )”m—1/2,m—1/2< : ‘|QH1/2,—1/2§ (38)
(n —m)! ﬂ sin T
4n+1)
in particular, for m =1 we have
, n
19", ST 1Oy, —1/2- (39)
2 sin ———
M+ 1)

The reader will have no trouble in deriving estimates of the constants in
other Bernstein type inequalities by using (32), (35), (3), (4), (16)-(17).

We note that, although most likely the constants in (33), (34), (38), (39)
are not exact, these inequalities cannot be improved in terms of the order
of growth with respect to n. This assertion has been proved in [2].
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